0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Natural Frequency based delamination estimation in GFRP beams using RSM and ANN

Author(s): ORCID
ORCID

Medium: journal article
Language(s): English
Published in: Frattura ed Integrità Strutturale, , n. 61, v. 16
Page(s): 487-495
DOI: 10.3221/igf-esis.61.32
Abstract:

The importance of delamination detection can be understood from aircraft components like Vertical Stabilizer, which is subjected to heavy vibration during the flight movement and it may lead to delamination and finally even flight crash can happen because of that. Any solid structure's vibration behaviour discloses specific dynamic characteristics and property parameters of that structure. This research investigates the detection of delamination in composites using a method based on vibration signals.  The composite material's flexural stiffness and strength are reduced as a result of delaminations, and vibration properties such as natural frequency responses are altered. In inverse problems involving vibration response, the response signals such as natural frequencies are utilized to find the location and magnitude of delaminations. For different delaminated beams with varying position and size, inverse approaches such as Response Surface Methodology (RSM) and Artificial Neural Network (ANN) are utilized to address the inverse problem, which aids in the prediction of delamination size and location.

Structurae cannot make the full text of this publication available at this time. The full text can be accessed through the publisher via the DOI: 10.3221/igf-esis.61.32.
  • About this
    data sheet
  • Reference-ID
    10690264
  • Published on:
    13/08/2022
  • Last updated on:
    13/08/2022
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine