0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Minimum Flexural Reinforcement Steel Ratios of High-Strength Concrete Beams

Author(s): ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2022
Page(s): 1-19
DOI: 10.1155/2022/5612790
Abstract:

Considering that most studies depend on theoretical equations to determine the minimum reinforcement ratio, only a few studies on this ratio are available. Therefore, a more defined limit should be suggested to design codes by performing additional investigations and experimental studies on this limit. This study examines the behavior of high-strength concrete (HSC) beams with low reinforcing steel ratios to establish a limit for the lowest flexural reinforcement ratio that will ensure ductility. Experiments were performed on 12 reinforced HSC beams with a concrete compressive strength of 99 MPa, which were divided into three categories depending on their size. Each category comprised four beam reinforcement ratios (0%, 0.13%, 0.33%, and 0.65%), and two main parameters (beam size and reinforcement ratio) were investigated. Furthermore, to ensure flexural failure at the middle-span, adequate web reinforcing was used in all the beams and tested under a four-point load until they exhibited failure. Based on regression analysis, an equation was proposed for the rupture modulus of reinforced beams. The findings suggest that, in addition to the yielding strength of the reinforcements and the compressive strength of the concrete, the depth of the beams should be considered when computing the minimum flexural reinforcement of beams.

Copyright: © 2022 Ameer M. Salih and Azad A. Mohammed et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10687279
  • Published on:
    13/08/2022
  • Last updated on:
    10/11/2022
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine