0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Author(s): ORCID
ORCID


Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2021
Page(s): 1-17
DOI: 10.1155/2021/5436482
Abstract:

Coal gangue, an industrial waste, is rich in silicon and aluminum phase and may be used as a mineral admixture in concrete after moderately stimulating activity, allowing for efficient solid waste utilization. This study used a mortar strength and activity evaluation method to investigate single or compound activation methods to find the optimum activation method of coal gangue. FLIR, XRD, and SEM were used to investigate the activation mechanism of different modes, providing a theoretical foundation for the study of coal gangue as a concrete admixture. Results showed that mechanical ball milling, microwave, and chemical activator could activate coal gangue, and the composite activation effect was the best. The fineness of the coal gangue powder was more than 300 mesh, according to the optimal compounding method. Accordingly, the particle surface was smooth, the internal defects were reduced, and the microwave irradiation temperature was 700°C–800°C, causing the coal gangue particles to form a bonding surface and gradually agglutinate and densify. Meanwhile, the layered structure of kaolin minerals was destroyed, and a significant amount of glassy active SiO2 and Al2O3 was produced, enhancing the gel ability and activity of coal gangue. Finally, 8% Ca(OH)2 was added in the production of mortar specimens, which increased the alkalinity of the slurry, stimulated the rapid cracking and secondary hydration of the coal gangue, and enhanced the strength of mortar. At this time, the activity rate of coal gangue powder reached the highest, which was 90.5%.

Copyright: © Jixi Chen et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10630609
  • Published on:
    01/10/2021
  • Last updated on:
    17/02/2022
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine