0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Machine learning of electroencephalography signals and eye movements to classify work-in-progress risk at construction sites

Author(s): ORCID



Medium: journal article
Language(s): English
Published in: Journal of Civil Engineering and Management, , n. 0, v. 0
Page(s): 1-16
DOI: 10.3846/jcem.2024.22719
Abstract:

The construction industry has consistently faced high accident rates and delays in recognizing hazards, posing significant risks to onsite personnel. Traditional hazard detection methods are often reactive rather than proactive, emphasizing a pressing need for innovative solutions. Despite advances in safety technology, a considerable gap remains in real-time, accurate hazard recognition at construction sites. Current technologies do not fully leverage physiological data to predict and mitigate risks. This research introduces a groundbreaking approach by employing machine learning to analyze electroencephalography (EEG) signals and eye movement data, enabling real-time differentiation of safe, warning, and hazardous visual cues. A Random Forest model with an impressive classification accuracy of 99.04% has been developed, marking a significant enhancement in identifying potential hazards. The possible impact of integrating EEG and eye movement analyses into wearable devices or onsite sensors is substantial, as it could revolutionize safety protocols in the construction industry, fostering a safer future.

Structurae cannot make the full text of this publication available at this time. The full text can be accessed through the publisher via the DOI: 10.3846/jcem.2024.22719.
  • About this
    data sheet
  • Reference-ID
    10810852
  • Published on:
    17/01/2025
  • Last updated on:
    17/01/2025
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine