0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Machine learning of electroencephalography signals and eye movements to classify work-in-progress risk at construction sites

Autor(en): ORCID



Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Journal of Civil Engineering and Management, , n. 0, v. 0
Seite(n): 1-16
DOI: 10.3846/jcem.2024.22719
Abstrakt:

The construction industry has consistently faced high accident rates and delays in recognizing hazards, posing significant risks to onsite personnel. Traditional hazard detection methods are often reactive rather than proactive, emphasizing a pressing need for innovative solutions. Despite advances in safety technology, a considerable gap remains in real-time, accurate hazard recognition at construction sites. Current technologies do not fully leverage physiological data to predict and mitigate risks. This research introduces a groundbreaking approach by employing machine learning to analyze electroencephalography (EEG) signals and eye movement data, enabling real-time differentiation of safe, warning, and hazardous visual cues. A Random Forest model with an impressive classification accuracy of 99.04% has been developed, marking a significant enhancement in identifying potential hazards. The possible impact of integrating EEG and eye movement analyses into wearable devices or onsite sensors is substantial, as it could revolutionize safety protocols in the construction industry, fostering a safer future.

Structurae kann Ihnen derzeit diese Veröffentlichung nicht im Volltext zur Verfügung stellen. Der Volltext ist beim Verlag erhältlich über die DOI: 10.3846/jcem.2024.22719.
  • Über diese
    Datenseite
  • Reference-ID
    10810852
  • Veröffentlicht am:
    17.01.2025
  • Geändert am:
    17.01.2025
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine