Investigation of Seismic Performance for Low-Rise RC Buildings with Different Patterns of Infill Walls
Author(s): |
Saharat Saengyuan
Panon Latcharote |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 16 September 2022, n. 9, v. 12 |
Page(s): | 1351 |
DOI: | 10.3390/buildings12091351 |
Abstract: |
Evaluating the structural performance of low-rise RC buildings with infill walls is an essential issue in Thailand, as most infill walls were not designed for lateral load resistance. The purpose of this study was to predict the structural behavior and illustrate the effects of infill walls. Residential, commercial, and educational buildings were selected as representative buildings with different patterns of infill walls. Based on the results, infill walls contributed to considerable strength and stiffness. Most of the infill walls that affected the low-rise buildings were at the ground floor level. The behavior of the buildings that had a contribution of infill walls was found to be brittle until the infill walls collapsed, and then the buildings became ductile. Some patterns in which infill walls were placed improperly led to a torsional effect, resulting in columns in the affected areas reaching failure criteria more than those without this effect. Considering the NLRHA procedure, only infill walls on the ground floor contributed to the building being subjected to a ground motion. The fully infilled frame tended to reach the infill crack before the other patterns. For the UMRHA procedure, only the first vibration mode was adequate to predict seismic responses, such as roof displacement and top-story drift. |
Copyright: | © 2022 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
6.28 MB
- About this
data sheet - Reference-ID
10692707 - Published on:
23/09/2022 - Last updated on:
10/11/2022