0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Investigation of Medium-Term Performance of Porous Asphalt and Its Impacts on Tire/Pavement Noise

Author(s):



ORCID


Medium: journal article
Language(s): English
Published in: Buildings, , n. 1, v. 14
Page(s): 64
DOI: 10.3390/buildings14010064
Abstract:

To assess the medium-term performance of porous asphalt pavement during service and its influence on tire/pavement noise level, a seven-year continuous observation and data analysis study was conducted. Key performance indicators were measured and calculated by using automated pavement technology testing equipment. The noise levels were tested by using the on-board sound intensity (OBSI) method on three types of porous asphalt pavements (PUC-10, PAC-13, and PUC-10 + PAC-13) and one dense thin layer course (DTC) for comparison. The findings indicated that the Damage Rate (DR) and Surface Friction Coefficient (SFC) of porous asphalt pavements diminished greatly over time, while the International Roughness Index (IRI) and Rut Depth (RD) remained relatively stable. The two-layer porous asphalt pavement showed the largest noise reduction over the medium-term. Compared to DTC, the OBSI noise levels of these structures were lower by 2.09 dB, 1.53 dB, and 2.88 dB, respectively. The OBSI was found to be closely correlated with the SFC, IRI, test speed, lane, and pavement type. The RD had a notable effect on the OBSI in PUC-10 pavements. In PUC-10 + PAC-13 pavements, a significant linear relationship was observed between the OBSI and SFC. This is mainly because of the polishing of the coarse aggregates, which leads to micro-texture reduction, high frequency noise increase, and SFC decrease. This study makes a valuable contribution to understanding the laws of porous asphalt pavement performance changes and the relationship between tire/pavement noise and pavement characteristics.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10753450
  • Published on:
    14/01/2024
  • Last updated on:
    07/02/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine