0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Investigation of Intermediate-Height Horizontal Brace Forces under Horizontal and Vertical Loads including Random Initial Imperfections

Author(s):
ORCID


Medium: journal article
Language(s): English
Published in: Buildings, , n. 1, v. 13
Page(s): 180
DOI: 10.3390/buildings13010180
Abstract:

In engineering practice, longitudinal brace systems for column-braced systems are designed to resist both horizontal and vertical loads. In previous experimental research on horizontal brace forces for column-braced systems of intermediate height, only vertical loads were considered. Hence, this paper presents a numerical simulation of numerous column-braced systems subjected to horizontal and vertical loads. In the numerical simulation, second-order analysis was adopted, and the Monte Carlo method was used to incorporate the randomness of initial imperfections in the horizontal brace and column. From the finite element (FE) analyses and probability model statistics, the normal probability density equation for intermediate-height horizontal brace forces under horizontal and vertical loads was obtained, and the corresponding design intermediate-height horizontal brace forces were determined and compared with those under vertical loads only. The results indicate that the design intermediate-height horizontal brace forces under horizontal and vertical loads are significantly greater than those under only vertical loads, and that the design intermediate-height horizontal brace forces under horizontal and vertical loads are also greater than the simple superposition results of horizontal loads and intermediate-height horizontal brace forces under only vertical loads.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10712762
  • Published on:
    21/03/2023
  • Last updated on:
    10/05/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine