Hydrophilic and hydrophobic shape memory polymer networks in high-intensity focused ultrasound fields
Author(s): |
Jiaxin Xi
Ahmed Sallam David L. Safranski Reza Mirzaeifar Shima Shahab |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Smart Materials and Structures, 4 January 2024, n. 2, v. 33 |
Page(s): | 025024 |
DOI: | 10.1088/1361-665x/ad1d07 |
Abstract: |
High-intensity focused ultrasound (HIFU) has been investigated as a remote and controlled activation method to noninvasively actuate shape memory polymers (SMPs), specifically in biomedical applications. However, the effects of aqueous environment on shape recoverability of in vivo HIFU-actuated SMPs have yet to be explored. HIFU directs sound waves into a millimeter-sized tightly focused region. In this study, the response of hydrophilic and hydrophobic photopolymerized thermoset SMP networks under HIFU activation in an aqueous environment was investigated. Acrylate-based SMP networks were copolymerized in specific ratios to produce networks with independently adjusted glass transition temperatures ranging from 40 to 80 °C and two distinct water uptake behaviors. The results link the polymer swelling behavior to shape recoverability in various acoustic fields. The presence of absorbed water molecules enhances the performance of SMPs in terms of their shape memory capabilities when activated by HIFU. Overall, understanding the interplay between water uptake and HIFU-actuated shape recovery is essential for optimizing the performance of SMPs in aqueous environments and advancing their use in various medical applications. |
Copyright: | © 2024 Jiaxin Xi, Ahmed Sallam, David L Safranski, Reza Mirzaeifar, Shima Shahab |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
5.24 MB
- About this
data sheet - Reference-ID
10758201 - Published on:
23/03/2024 - Last updated on:
25/04/2024