0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Formwork System Selection in Building Construction Projects Using an Integrated Rough AHP-EDAS Approach: A Case Study

Author(s): ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Buildings, , n. 8, v. 12
Page(s): 1084
DOI: 10.3390/buildings12081084
Abstract:

The successful completion of reinforced concrete (RC) building construction projects depends, in part, on selecting the appropriate formwork system (FWS) since it may significantly affect the project’s cost, time, and quality performance factors. The selection of the FWS depends on a number of compromising and conflicting criteria, while several FWS alternatives may be available. Therefore, the FWS selection has mostly been treated as a multi-criteria-decision-making (MCDM) problem. Although various MCDM methods have been employed to address the FWS selection problem, none have considered the subjectivity and uncertainty arising from a group decision-making process. This study aims to fill this knowledge gap by proposing an integrated approach using recently developed MCDM methods with rough numbers. In the integrated approach, first, a decision-making team is formed to develop the decision hierarchy. Then, the rough analytic hierarchy process (R-AHP) is used to determine rough criteria weights, followed by the rough evaluation based on the distance from average solution (R-EDAS) method to rank the FWS alternatives. Finally, the results are compared using different rough MCDM methods to ensure the stability of the proposed approach. The proposed approach is applied to a real-life building construction project in Turkey to select the most appropriate FWS. The integrated approach was found to be effective, and it was recommended to be used for future FWS selection problems. The proposed integrated approach in this study may be used as a decision support tool for construction professionals and experts to select the FWS in building construction projects.

Copyright: © 2022 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10688392
  • Published on:
    13/08/2022
  • Last updated on:
    10/11/2022
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine