0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Flexural–Shear Performance of Lightweight Concrete Panels with High Insulation Capacity

Author(s): ORCID
ORCID
ORCID

Medium: journal article
Language(s): English
Published in: Buildings, , n. 10, v. 12
Page(s): 1741
DOI: 10.3390/buildings12101741
Abstract:

With the increased interest in the inherent fire resistance of organic insulators, various precast concrete insulation panels have been developed. However, precast concrete insulation panels still have structural and fire resistance problems resulting from a low composite action and unclosed cross-sectional details. To improve composite action and fire resistance, this study proposes the closed cross-sectional details of insulator panels with lightweight aggregate concrete, insulation material, and wire mesh. The objective of this study is to examine the flexural–shear performance of precast lightweight concrete panels with closed cross-sectional details developed for exterior cladding with high insulation capacity. Six full-sized insulation panels were tested under two-point top loadings. The main investigated test parameters to vary the moment–shear ratio of the insulation panels were the amount of the shear reinforcement and shear span–effective depth ratio. Test results indicate that the insulation panels with moment–shear ratios of 2.60 or higher were governed by shear, indicating that the longitudinal bars remained in an elastic state until the peak load of the insulation panels was reached. Thus, an increase in the moment–shear ratio of the insulation panels led to more brittle failure characteristics. Meanwhile, the insulation panels governed by flexure exhibited plastic flow performance in the applied load–deflection curve and well-distributed cracks. In particular, the maximal flexural moments of insulation panels with moment–shear ratios of 0.75 or less were higher than those calculated from the equations specified in ACI 318-19, indicating that the composite action was fully exerted. Overall, the developed insulation panels with cross-sectional details must be designed to a have moment–shear ratio of 0.75 or less to fulfil the ductile response under extreme lateral loads and exert full composite action.

Copyright: © 2022 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10699756
  • Published on:
    11/12/2022
  • Last updated on:
    15/02/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine