0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Failure Probability-Based Optimal Seismic Design of Reinforced Concrete Structures Using Genetic Algorithms

Author(s): ORCID

ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Infrastructures, , n. 9, v. 9
Page(s): 164
DOI: 10.3390/infrastructures9090164
Abstract:

Artificial intelligence (AI) has enabled several optimization techniques for structural design, including machine learning, evolutionary algorithms, as in the case of genetic algorithms, reinforced learning, deep learning, etc. Although the use of AI for weight optimization in steel and concrete buildings has been extensively studied in recent decades, multi-objective optimization for reinforced concrete (RC) and steel buildings remains challenging due to the difficulty in establishing independent objective functions and obtaining Pareto fronts. The well-known Non-Dominated Sorting Genetic Algorithm II (NSGA-II) is an efficient genetic algorithm approach for multi-objective optimization. In this work, the NSGA-II approach is considered for the multi-objective structural optimization of three-dimensional RC buildings subjected to earthquakes. For the objective of this study, two function objectives are considered: minimizing total cost and the probability of structural failure, which are obtained via several nonlinear seismic analyses of the RC buildings. Beams and columns’ cross-sectional dimensions are selected as design variables, and the Mexican Building Code (MBC) specifications are imposed as design constraints. Pareto fronts are obtained for two RC-framed buildings located in Mexico City (soft soil sites), which demonstrate the efficiency and accuracy of NSGA-II for structural optimization.

Copyright: © 2024 the Authors. Licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10800583
  • Published on:
    23/09/2024
  • Last updated on:
    23/09/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine