Failure Probability-Based Optimal Seismic Design of Reinforced Concrete Structures Using Genetic Algorithms
Autor(en): |
Juan Bojórquez
Edén Bojórquez Herian Leyva Manuel Barraza |
---|---|
Medium: | Fachartikel |
Sprache(n): | Englisch |
Veröffentlicht in: | Infrastructures, 23 August 2024, n. 9, v. 9 |
Seite(n): | 164 |
DOI: | 10.3390/infrastructures9090164 |
Abstrakt: |
Artificial intelligence (AI) has enabled several optimization techniques for structural design, including machine learning, evolutionary algorithms, as in the case of genetic algorithms, reinforced learning, deep learning, etc. Although the use of AI for weight optimization in steel and concrete buildings has been extensively studied in recent decades, multi-objective optimization for reinforced concrete (RC) and steel buildings remains challenging due to the difficulty in establishing independent objective functions and obtaining Pareto fronts. The well-known Non-Dominated Sorting Genetic Algorithm II (NSGA-II) is an efficient genetic algorithm approach for multi-objective optimization. In this work, the NSGA-II approach is considered for the multi-objective structural optimization of three-dimensional RC buildings subjected to earthquakes. For the objective of this study, two function objectives are considered: minimizing total cost and the probability of structural failure, which are obtained via several nonlinear seismic analyses of the RC buildings. Beams and columns’ cross-sectional dimensions are selected as design variables, and the Mexican Building Code (MBC) specifications are imposed as design constraints. Pareto fronts are obtained for two RC-framed buildings located in Mexico City (soft soil sites), which demonstrate the efficiency and accuracy of NSGA-II for structural optimization. |
Copyright: | © 2024 the Authors. Licensee MDPI, Basel, Switzerland. |
Lizenz: | Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden. |
1.28 MB
- Über diese
Datenseite - Reference-ID
10800583 - Veröffentlicht am:
23.09.2024 - Geändert am:
23.09.2024