0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Experimental Test and Analytical Calculation on Residual Strength of Prestressed Concrete T-Beams After Fire

Author(s):





Medium: journal article
Language(s): English
Published in: Buildings, , n. 11, v. 14
Page(s): 3579
DOI: 10.3390/buildings14113579
Abstract:

High temperatures during a fire can lead to the evaporation of moisture and the degradation of hydration products within concrete, consequently compromising its mechanical properties. This paper thoroughly investigates the effect of fire-induced high temperatures on the residual load-bearing capacity of concrete structures, with a focus on prestressed concrete T-beams. By conducting constant temperature tests and residual load-bearing capacity tests, complemented by finite element modeling, this study examines the degradation of mechanical properties in prestressed concrete T-beams due to fire exposure and its impact on post-fire residual load-bearing capacity. Additionally, an equivalent concrete compressive strength method was employed to propose a calculation method for concrete material degradation under high temperatures and a corresponding concrete strength reduction factor. Simplified calculations were also performed for the high-temperature damage to reinforcement and prestressed tendons, leading to the derivation of a simplified formula for the residual load-bearing capacity of post-fire prestressed concrete T-beams. The results indicate that in prestressed concrete T-beams exposed to fire, an increase in holding time results in more severe damage modes, accelerated crack propagation, and wider crack widths during bending failure. Under the same load, a longer holding time corresponds to a more pronounced reduction in deflection. At holding times of 60 min, 120 min, and 180 min, the prestress losses were 48.17%, 85.16%, and 93.26%, respectively. The cracking load decreased by 15%, 27%, and 42%, while the residual load-bearing capacity decreased by 11%, 21%, and 28%. Comparison with experimental data demonstrates that both the finite element model and the simplified calculation formula exhibit high accuracy, offering a reliable reference for the performance evaluation of post-fire prestressed concrete T-beams.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10810657
  • Published on:
    17/01/2025
  • Last updated on:
    17/01/2025
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine