Experimental Test and Analytical Calculation on Residual Strength of Prestressed Concrete T-Beams After Fire
Auteur(s): |
Zhongqiang Wang
Chao Xu Miao Chen Jingwei Sun Hangke Zhou Yingxin Zhou |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Buildings, 22 octobre 2024, n. 11, v. 14 |
Page(s): | 3579 |
DOI: | 10.3390/buildings14113579 |
Abstrait: |
High temperatures during a fire can lead to the evaporation of moisture and the degradation of hydration products within concrete, consequently compromising its mechanical properties. This paper thoroughly investigates the effect of fire-induced high temperatures on the residual load-bearing capacity of concrete structures, with a focus on prestressed concrete T-beams. By conducting constant temperature tests and residual load-bearing capacity tests, complemented by finite element modeling, this study examines the degradation of mechanical properties in prestressed concrete T-beams due to fire exposure and its impact on post-fire residual load-bearing capacity. Additionally, an equivalent concrete compressive strength method was employed to propose a calculation method for concrete material degradation under high temperatures and a corresponding concrete strength reduction factor. Simplified calculations were also performed for the high-temperature damage to reinforcement and prestressed tendons, leading to the derivation of a simplified formula for the residual load-bearing capacity of post-fire prestressed concrete T-beams. The results indicate that in prestressed concrete T-beams exposed to fire, an increase in holding time results in more severe damage modes, accelerated crack propagation, and wider crack widths during bending failure. Under the same load, a longer holding time corresponds to a more pronounced reduction in deflection. At holding times of 60 min, 120 min, and 180 min, the prestress losses were 48.17%, 85.16%, and 93.26%, respectively. The cracking load decreased by 15%, 27%, and 42%, while the residual load-bearing capacity decreased by 11%, 21%, and 28%. Comparison with experimental data demonstrates that both the finite element model and the simplified calculation formula exhibit high accuracy, offering a reliable reference for the performance evaluation of post-fire prestressed concrete T-beams. |
Copyright: | © 2024 by the authors; licensee MDPI, Basel, Switzerland. |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
9.48 MB
- Informations
sur cette fiche - Reference-ID
10810657 - Publié(e) le:
17.01.2025 - Modifié(e) le:
17.01.2025