0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Energy Cost Driven Heating Control with Reinforcement Learning

Author(s):



Medium: journal article
Language(s): English
Published in: Buildings, , n. 2, v. 13
Page(s): 427
DOI: 10.3390/buildings13020427
Abstract:

The current energy crisis raised concern about the lack of electricity during the wintertime, especially that consumption should be cut at peak consumption hours. For the building owners, this is visible as rising electricity prices. Availability of near real-time data on energy performance is opening new opportunities to optimize energy flexibility capabilities of buildings. This paper presents a reinforcement learning (RL)-based method to control the heating for minimizing the heating electricity cost and shifting the electricity usage away from peak demand hours. Simulations are carried out with electrically heated single-family houses. The results indicate that with RL, in the case of varying electricity prices, it is possible to save money and keep the indoor thermal comfort at an appropriate level.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10712551
  • Published on:
    21/03/2023
  • Last updated on:
    10/05/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine