0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Autor(en):



Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Buildings, , n. 2, v. 13
Seite(n): 427
DOI: 10.3390/buildings13020427
Abstrakt:

The current energy crisis raised concern about the lack of electricity during the wintertime, especially that consumption should be cut at peak consumption hours. For the building owners, this is visible as rising electricity prices. Availability of near real-time data on energy performance is opening new opportunities to optimize energy flexibility capabilities of buildings. This paper presents a reinforcement learning (RL)-based method to control the heating for minimizing the heating electricity cost and shifting the electricity usage away from peak demand hours. Simulations are carried out with electrically heated single-family houses. The results indicate that with RL, in the case of varying electricity prices, it is possible to save money and keep the indoor thermal comfort at an appropriate level.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
Lizenz:

Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden.

  • Über diese
    Datenseite
  • Reference-ID
    10712551
  • Veröffentlicht am:
    21.03.2023
  • Geändert am:
    10.05.2023
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine