Effects of Shear Tabs and High-Strength Bolts in Seismic Performance of Steel Moment Connections
Author(s): |
Chi-ming Lai
Ching-Yu Yeh Sin-Yu Kang Heui-Yung Chang |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 25 August 2021, n. 9, v. 11 |
Page(s): | 415 |
DOI: | 10.3390/buildings11090415 |
Abstract: |
A shear tab and high-strength bolts are often used to connect a steel H-beam to a column. The design demand and capacity of these elements vary from one standard to the other. To investigate the effect, this study applied a finite element method (FEM) to develop models for two steel moment connections and validated the effectiveness by test data. The connections were characteristic of bolted-web-and-welded-flange details. The FEM models were then used to study the design of shear tabs and high-strength bolts in accordance with the U.S. and Japan standards and compared to the Taiwan practice. The result showed a small difference in the peak loads of the connections. However, the U.S. direct welded flange connection had flange buckling and strength degradation at a relatively smaller drift. The connection had a thinner shear tab and fewer high-strength bolts. The other two connections had very similar design results and loading responses. The increase in shear-tab thickness reduced the stress concentration and fracture potential of the connections. It is, therefore, recommended to design a shear tab with moment capacity greater than the beam web. This will reduce the stress concentration of the base metal surrounding the beam-flange groove welds, increasing the connection ductility. |
Copyright: | © 2021 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
6.44 MB
- About this
data sheet - Reference-ID
10631196 - Published on:
01/10/2021 - Last updated on:
05/10/2021