0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Effect of Olive Waste Ash as a Partial Replacement of Cement on the Volume Stability of Cement Paste

Author(s):
ORCID
ORCID
ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Infrastructures, , n. 11, v. 9
Page(s): 193
DOI: 10.3390/infrastructures9110193
Abstract:

Over the last decades, concrete has been excessively prone to cracks resulting from shrinkage. These dimensional changes can be affected by the incorporation of supplementary cementitious materials. This work used olive waste ash (OWA), which could substantially tackle this problem and achieve sustainability goals. For this issue, five cement paste mixes were prepared by replacing cement with OWA at different percentages varying from 0 to 20% by weight with a constant increment of 5%. The water-to-cement ratio was 0.45 for all mixes. Compressive strength and flexural strength were investigated at 7, 28, and 90 days. In addition, three shrinkage tests (drying, autogenous, and chemical) and expansion tests were also conducted for each mix and measured during 90 days of curing. The experimental findings indicated that there was a loss in compressive and flexural strength in the existence of OWA. Among all mixes containing OWA, the samples incorporating 10% OWA exhibited maximum strength values. Furthermore, the chemical and autogenous shrinkage decreased with the incorporation of OWA. However, the drying shrinkage decreased at lower levels of substitutions and increased at higher replacement levels. In addition, there was a growth in expansion rates for up to 10% of OWA content, followed by a decrease at higher levels (beyond 10%). Additionally, correlations between these volumetric stability tests were performed. It was shown that a positive linear correlation existed between chemical shrinkage and autogenous and drying shrinkage; however, there was a negative relationship between chemical shrinkage and expansion.

Copyright: © 2024 the Authors. Licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10806429
  • Published on:
    10/11/2024
  • Last updated on:
    10/11/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine