0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Effect of Olive Waste Ash as a Partial Replacement of Cement on the Volume Stability of Cement Paste

Autor(en):
ORCID
ORCID
ORCID
ORCID
Medium: Fachartikel
Sprache(n): Englisch
Veröffentlicht in: Infrastructures, , n. 11, v. 9
Seite(n): 193
DOI: 10.3390/infrastructures9110193
Abstrakt:

Over the last decades, concrete has been excessively prone to cracks resulting from shrinkage. These dimensional changes can be affected by the incorporation of supplementary cementitious materials. This work used olive waste ash (OWA), which could substantially tackle this problem and achieve sustainability goals. For this issue, five cement paste mixes were prepared by replacing cement with OWA at different percentages varying from 0 to 20% by weight with a constant increment of 5%. The water-to-cement ratio was 0.45 for all mixes. Compressive strength and flexural strength were investigated at 7, 28, and 90 days. In addition, three shrinkage tests (drying, autogenous, and chemical) and expansion tests were also conducted for each mix and measured during 90 days of curing. The experimental findings indicated that there was a loss in compressive and flexural strength in the existence of OWA. Among all mixes containing OWA, the samples incorporating 10% OWA exhibited maximum strength values. Furthermore, the chemical and autogenous shrinkage decreased with the incorporation of OWA. However, the drying shrinkage decreased at lower levels of substitutions and increased at higher replacement levels. In addition, there was a growth in expansion rates for up to 10% of OWA content, followed by a decrease at higher levels (beyond 10%). Additionally, correlations between these volumetric stability tests were performed. It was shown that a positive linear correlation existed between chemical shrinkage and autogenous and drying shrinkage; however, there was a negative relationship between chemical shrinkage and expansion.

Copyright: © 2024 the Authors. Licensee MDPI, Basel, Switzerland.
Lizenz:

Dieses Werk wurde unter der Creative-Commons-Lizenz Namensnennung 4.0 International (CC-BY 4.0) veröffentlicht und darf unter den Lizenzbedinungen vervielfältigt, verbreitet, öffentlich zugänglich gemacht, sowie abgewandelt und bearbeitet werden. Dabei muss der Urheber bzw. Rechteinhaber genannt und die Lizenzbedingungen eingehalten werden.

  • Über diese
    Datenseite
  • Reference-ID
    10806429
  • Veröffentlicht am:
    10.11.2024
  • Geändert am:
    10.11.2024
 
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine