0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Dynamic Modulus Prediction of a High-Modulus Asphalt Mixture

Author(s): ORCID

ORCID

ORCID

Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2021
Page(s): 1-10
DOI: 10.1155/2021/9944415
Abstract:

Dynamic modulus is a key evaluation index of the high-modulus asphalt mixture, but it is relatively difficult to test and collect its data. The purpose is to achieve the accurate prediction of the dynamic modulus of the high-modulus asphalt mixture and further optimize the design process of the high-modulus asphalt mixture. Five high-temperature performance indexes of high-modulus asphalt and its mixture were selected. The correlation between the above five indexes and the dynamic modulus of the high-modulus asphalt mixture was analyzed. On this basis, the dynamic modulus prediction models of the high-modulus asphalt mixture based on small sample data were established by multiple regression, general regression neural network (GRNN), and support vector machine (SVM) neural network. According to parameter adjustment and cross-validation, the output stability and accuracy of different prediction models were compared and evaluated. The most effective prediction model was recommended. The results show that the SVM model has more significant prediction accuracy and output stability than the multiple regression model and the GRNN model. Its prediction error was 0.98–9.71%. Compared with the other two models, the prediction error of the SVM model declined by 0.50–11.96% and 3.76–13.44%. The SVM neural network was recommended as the dynamic modulus prediction model of the high-modulus asphalt mixture.

Copyright: © Chaohui Wang et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10613180
  • Published on:
    09/07/2021
  • Last updated on:
    17/02/2022
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine