0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Auteur(s): ORCID

ORCID

ORCID

Médium: article de revue
Langue(s): anglais
Publié dans: Advances in Civil Engineering, , v. 2021
Page(s): 1-10
DOI: 10.1155/2021/9944415
Abstrait:

Dynamic modulus is a key evaluation index of the high-modulus asphalt mixture, but it is relatively difficult to test and collect its data. The purpose is to achieve the accurate prediction of the dynamic modulus of the high-modulus asphalt mixture and further optimize the design process of the high-modulus asphalt mixture. Five high-temperature performance indexes of high-modulus asphalt and its mixture were selected. The correlation between the above five indexes and the dynamic modulus of the high-modulus asphalt mixture was analyzed. On this basis, the dynamic modulus prediction models of the high-modulus asphalt mixture based on small sample data were established by multiple regression, general regression neural network (GRNN), and support vector machine (SVM) neural network. According to parameter adjustment and cross-validation, the output stability and accuracy of different prediction models were compared and evaluated. The most effective prediction model was recommended. The results show that the SVM model has more significant prediction accuracy and output stability than the multiple regression model and the GRNN model. Its prediction error was 0.98–9.71%. Compared with the other two models, the prediction error of the SVM model declined by 0.50–11.96% and 3.76–13.44%. The SVM neural network was recommended as the dynamic modulus prediction model of the high-modulus asphalt mixture.

Copyright: © Chaohui Wang et al.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10613180
  • Publié(e) le:
    09.07.2021
  • Modifié(e) le:
    17.02.2022
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine