0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Development of Sustainable Slag-based Geopolymer Concrete Using Different Types of Chemical Admixtures

Author(s):


ORCID
Medium: journal article
Language(s): English
Published in: International Journal of Concrete Structures and Materials, , n. 1, v. 18
DOI: 10.1186/s40069-024-00672-1
Abstract:

Geopolymer concrete (GPC) has achieved a wide popularity since innovating it as an alternative to conventional concrete because of its superior mechanical characteristics and durability, in addition to being a green concrete due to its low negative impact on the environment. However, GPC still suffers from the problem of its poor workability which suppresses its spread in construction applications. This study investigated the most effective parameters on the workability of GPC including GGBFS content, water to binder ratio, and dosage of different types of chemical admixtures, Naphthalene-Based Admixture (NPA) and Polycarboxylate-Based Admixture (PCA), using Taguchi approach and Analysis of Variance (ANOVA) analysis considering the compressive strength at the different concrete ages. It was observed that NPA, in the geopolymer concrete, improved the compressive strength compared to PCA. The NPA-based mixes achieved the highest 28-day compressive strength, 69 MPa, with about 27.8% more than the highest 28-day compressive strength achieved by the PCA-based mixes, 54 MPa. The obtained results revealed that the NPA has achieved the best improvement for both the workability, in terms of initial slump value and slump loss rate, and the compressive strength of GPC mixes compared to PCA.

Structurae cannot make the full text of this publication available at this time. The full text can be accessed through the publisher via the DOI: 10.1186/s40069-024-00672-1.
  • About this
    data sheet
  • Reference-ID
    10789812
  • Published on:
    20/06/2024
  • Last updated on:
    20/06/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine