Development of a Method to Study Evaporation of a Volatile Solvent in an Isolated Subsurface Structure: A Practical Exercise in Risk Minimization
Author(s): |
Thomas Neil McManus
Ana Rosa Assed Haddad |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Infrastructures, August 2020, n. 8, v. 5 |
Page(s): | 68 |
DOI: | 10.3390/infrastructures5080068 |
Abstract: |
This article describes development and confirmatory testing of a method to study the evaporation of a volatile solvent containing ignitable ingredients in an isolated subsurface structure, a type of confined space. Accidental spillage and surreptitious disposal of chemical products in streets create a risk of fire and explosions in these structures. Development of the method included consideration about instrument safety; personal exposure; volume of the structure (2.5 m³); evaporation rate; temperature of the airspace; and number of opening(s) in the manhole cover. Confirmatory testing utilized 10 mL of lacquer thinner (60% to 80% toluene, 10% to 20% methylethyl ketone (MEK), 5% to 10% methanol and 1% to 9% acetone) on a wetted paper towel positioned near the bottom of the structure. This methodology produced a maximum of 2150 ppm of ‘isobutylene units’ on a PID (PhotoIonization sensor) positioned about 15 cm above the sample. This concentration corresponds to about 1140 ppm of toluene (less than 10% of the Lower Flammable Limit of 12,700 ppm). This method offers a stable, safe platform for study of the process. Evaporation of solvent and exchange between the external atmosphere and the airspace regulate the concentration of vapor, which can typically persist for 24 to 48 h. |
Copyright: | © 2020 the Authors. Licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
2.28 MB
- About this
data sheet - Reference-ID
10723174 - Published on:
22/04/2023 - Last updated on:
10/05/2023