Deep-Learning-Based Bughole Detection for Concrete Surface Image
Author(s): |
Gang Yao
Fujia Wei Yang Yang Yujia Sun |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Advances in Civil Engineering, 2019, v. 2019 |
Page(s): | 1-12 |
DOI: | 10.1155/2019/8582963 |
Abstract: |
Bugholes are surface imperfections that appear as small pits and craters on concrete surface after the casting process. The traditional measurement methods are carried out by in situ manual inspection, and the detection process is time-consuming and difficult. This paper proposed a deep-learning-based method to detect bugholes on concrete surface images. A deep convolutional neural network for detecting bugholes on concrete surfaces was developed, by adding the inception modules into the traditional convolution network structure to solve the problem of the relatively small size of input image (28 × 28 pixels) and the limited number of labeled examples in training set (less than 10 K). The effects of noise such as illumination, shadows, and combinations of several different surface imperfections in real-world environments were considered. From the results of image test, the proposed DCNN had an excellent bughole detection performance and the recognition accuracy reached 96.43%. By the comparative study with the Laplacian of Gaussian (LoG) algorithm and the Otsu method, the proposed DCNN had good robustness which can avoid the interference of cracks, color-differences, and nonuniform illumination on the concrete surface. |
Copyright: | © 2019 Gang Yao et al. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
4.62 MB
- About this
data sheet - Reference-ID
10315118 - Published on:
24/06/2019 - Last updated on:
02/06/2021