0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Auteur(s):



Médium: article de revue
Langue(s): anglais
Publié dans: Advances in Civil Engineering, , v. 2019
Page(s): 1-12
DOI: 10.1155/2019/8582963
Abstrait:

Bugholes are surface imperfections that appear as small pits and craters on concrete surface after the casting process. The traditional measurement methods are carried out by in situ manual inspection, and the detection process is time-consuming and difficult. This paper proposed a deep-learning-based method to detect bugholes on concrete surface images. A deep convolutional neural network for detecting bugholes on concrete surfaces was developed, by adding the inception modules into the traditional convolution network structure to solve the problem of the relatively small size of input image (28 × 28 pixels) and the limited number of labeled examples in training set (less than 10 K). The effects of noise such as illumination, shadows, and combinations of several different surface imperfections in real-world environments were considered. From the results of image test, the proposed DCNN had an excellent bughole detection performance and the recognition accuracy reached 96.43%. By the comparative study with the Laplacian of Gaussian (LoG) algorithm and the Otsu method, the proposed DCNN had good robustness which can avoid the interference of cracks, color-differences, and nonuniform illumination on the concrete surface.

Copyright: © 2019 Gang Yao et al.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10315118
  • Publié(e) le:
    24.06.2019
  • Modifié(e) le:
    02.06.2021
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine