0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Deep deterministic policy gradient and graph convolutional network for bracing direction optimization of grid shells

Author(s):


Medium: journal article
Language(s): English
Published in: Frontiers in Built Environment, , v. 8
DOI: 10.3389/fbuil.2022.899072
Abstract:

In this paper, we propose a method for bracing direction optimization of grid shells using a Deep Deterministic Policy Gradient (DDPG) and Graph Convolutional Network (GCN). DDPG allows simultaneous adjustment of variables during the optimization process, and GCN allows the DDPG agent to receive data representing the whole structure to determine its actions. The structure is interpreted as a graph where nodes, element properties, and internal forces are represented by the node feature matrix, adjacency matrices, and weighted adjacency matrices. DDPG agent is trained to optimize the bracing directions. The trained agent can find sub-optimal solutions with moderately small computational cost compared to the genetic algorithm. The trained agent can also be applied to structures with different sizes and boundary conditions without retraining. Therefore, when various types of braced grid shells have to be considered in the design process, the proposed method can significantly reduce computational cost for structural analysis.

Copyright: © Chi-tathon Kupwiwat, Kazuki Hayashi, Makoto Ohsaki
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10693771
  • Published on:
    23/09/2022
  • Last updated on:
    10/11/2022
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine