Deep deterministic policy gradient and graph convolutional network for bracing direction optimization of grid shells
Auteur(s): |
Chi-tathon Kupwiwat
Kazuki Hayashi Makoto Ohsaki |
---|---|
Médium: | article de revue |
Langue(s): | anglais |
Publié dans: | Frontiers in Built Environment, février 2022, v. 8 |
DOI: | 10.3389/fbuil.2022.899072 |
Abstrait: |
In this paper, we propose a method for bracing direction optimization of grid shells using a Deep Deterministic Policy Gradient (DDPG) and Graph Convolutional Network (GCN). DDPG allows simultaneous adjustment of variables during the optimization process, and GCN allows the DDPG agent to receive data representing the whole structure to determine its actions. The structure is interpreted as a graph where nodes, element properties, and internal forces are represented by the node feature matrix, adjacency matrices, and weighted adjacency matrices. DDPG agent is trained to optimize the bracing directions. The trained agent can find sub-optimal solutions with moderately small computational cost compared to the genetic algorithm. The trained agent can also be applied to structures with different sizes and boundary conditions without retraining. Therefore, when various types of braced grid shells have to be considered in the design process, the proposed method can significantly reduce computational cost for structural analysis. |
Copyright: | © Chi-tathon Kupwiwat, Kazuki Hayashi, Makoto Ohsaki |
License: | Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original. |
3.96 MB
- Informations
sur cette fiche - Reference-ID
10693771 - Publié(e) le:
23.09.2022 - Modifié(e) le:
10.11.2022