0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Composites Based on Alternative Raw Materials at High Temperature Conditions

Author(s):


Medium: journal article
Language(s): English
Published in: Periodica Polytechnica Civil Engineering
DOI: 10.3311/ppci.9820
Abstract:

This paper presents newly developed polymer-cement composites.The primary binder (cement) was partially substituted byuse of blast-furnace slag and high-temperature fly ash. A lightweightaggregate – agloporite (grain size in range 1–2 mm) wasused among other components. This porous aggregate is producedfrom energy by-products (fly ash). Attention was focusedon the behavior of the composites when exposed to elevatedtemperatures (400 °C–1,000°C). The influence of several differentmethods of temperature decrease was assessed – slow(in furnace 1°C/min) and rapid (laboratory ambient 22°C andwater bath 18°C). Specific dimensional changes were determined,including strength characteristics and bulk density.Structural deterioration and microstructural changes of selectedspecimens were investigated by analytical techniques (SEM andCT). Compressive and bending tensile strength changed variouslydepending on temperature changes, including severalcooling conditions. Deterioration reactions (especially cracks)which were formed in investigated composite structures correspondedwith results of physico-mechanical testing. That wasconfirmed by using the CT and SEM.The fact that the agloporite has a positive effect on thermalresistance of developed polymer-cement composites wasproved. Almost no cracks or other failures were identified (byusing CT and SEM) in interfacial transition zones of agloporiteafter thermal stress. This indicates very good bond adhesionbetween the matrix and the porous aggregates during extremetemperature conditions (in case of different cooling methods).

Structurae cannot make the full text of this publication available at this time. The full text can be accessed through the publisher via the DOI: 10.3311/ppci.9820.
  • About this
    data sheet
  • Reference-ID
    10536656
  • Published on:
    01/01/2021
  • Last updated on:
    19/02/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine