0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Characterization tests for predicting the mechanical performance of SFRC floors: design considerations

Author(s):





Medium: journal article
Language(s): English
Published in: Materials and Structures, , n. 1, v. 54
DOI: 10.1617/s11527-020-01598-2
Abstract:

The paper presents an experimental program carried out to check the load bearing capacity of a steel fibre reinforced concrete (SFRC) floor in northern Italy. The extensive mechanical characterization focused on the suitability of 3 non-standardized test methods for quality control and tensile constitutive curve assessment was performed, this consisting of: uniaxial tensile test (UTT), double edge wedge splitting test (DEWST) and double punching test (DPT) to characterize the post-cracking mechanical properties of the material. The joint experimental programme, carried out at the Politecnico di Milano and at the Universitat Politècnica de Catalunya, included the flexural characterization of four shallow beams (1.5 × 0.5 × 0.25 m³) and six standard notched beams (0.55 × 0.15 × 0.15 m³). All the samples were produced from the same batch and with the same SFRC mix which was applied for the floor. After that, 192 cores were drilled from the shallow beams and subjected to either UTTs, DEWSTs or DPTs. The stress level, the scatter and the constitutive curves derived from the non-standardized tests were identified and analysed. The calculated constitutive curves were used to predict the behaviour of the shallow beams.

Copyright: © The Author(s) 2020
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10540914
  • Published on:
    05/01/2021
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine