0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

A bibliometric review of the statistical modelling techniques for cost estimation of infrastructure projects

Author(s): ORCID
ORCID

Medium: journal article
Language(s): English
Published in: Smart and Sustainable Built Environment
DOI: 10.1108/sasbe-01-2023-0005
Abstract:

Purpose

Cost overrun in infrastructure projects is a constant concern, with a need for a proper solution. The current estimation practice needs improvement to reduce cost overruns. This study aimed to find possible statistical modelling techniques that could be used to develop cost models to produce more reliable cost estimates.

Design/methodology/approach

A bibliographic literature review was conducted using a two-stage selection method to compile the relevant publications from Scopus. Then, Visualisation of Similarities (VOS)-Viewer was used to develop the visualisation maps for co-occurrence keyword analysis and yearly trends in research topics.

Findings

The study found seven primary techniques used as cost models in construction projects: regression analysis (RA), artificial neural network (ANN), case-based reasoning (CBR), fuzzy logic, Monte-Carlo simulation (MCS), support vector machine (SVM) and reference class forecasting (RCF). RA, ANN and CBR were the most researched techniques. Furthermore, it was observed that the model's performance could be improved by combining two or more techniques into one model.

Research limitations/implications

The research was limited to the findings from the bibliometric literature review.

Practical implications

The findings provided an assessment of statistical techniques that the industry can adopt to improve the traditional estimation practice of infrastructure projects.

Originality/value

This study mapped the research carried out on cost-modelling techniques and analysed the trends. It also reviewed the performance of the models developed for infrastructure projects. The findings could be used to further research to develop more reliable cost models using statistical modelling techniques with better performance.

Structurae cannot make the full text of this publication available at this time. The full text can be accessed through the publisher via the DOI: 10.1108/sasbe-01-2023-0005.
  • About this
    data sheet
  • Reference-ID
    10779610
  • Published on:
    12/05/2024
  • Last updated on:
    12/05/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine