The Bearing and Breakage Characteristics of Crushed Stone Aggregates in the Bedding Course of Permeable Roads
Author(s): |
Zhongbing Cai
Chengchun Qiu |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Advances in Civil Engineering, January 2020, v. 2020 |
Page(s): | 1-9 |
DOI: | 10.1155/2020/8890672 |
Abstract: |
The current study of permeable roads helps address urban flooding in Chinese cities caused by frequent heavy rainfall and build smart cities with sponge-like functionality. Crushed stone is widely used in constructing the bedding course of permeable roads because it has good water permeability. Experiments on the compaction of crushed stone were carried out by considering the impact of particle size and gradation to examine the strength and particle breakage characteristics of crushed stone and evaluate its use as the aggregate in the bedding course of permeable roads. The compaction process can be divided into two stages, i.e., the preliminary compaction stage and the particle crushing and intensive compaction stage. The latter consists of an alternating cycle of compacting and crushing. The particle size distribution after crushing can be described analogously to the Talbot continuous gradation equation. Single particle size samples are subject to earlier and stronger particle breakage than the mixed particle size sample, which are affected by both compaction level and loading speed. This study has important application value, and it provides experimental support for the study of materials for urban permeable roads. |
Copyright: | © Zhongbing Cai and Chengchun Qiu et al. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
3.19 MB
- About this
data sheet - Reference-ID
10473590 - Published on:
31/10/2020 - Last updated on:
02/06/2021