0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Automated signal‐based evaluation of dynamic cone resistance via machine learning for subsurface characterization

Author(s):

Medium: journal article
Language(s): English
Published in: Computer-Aided Civil and Infrastructure Engineering, , n. 16, v. 39
Page(s): 2541-2552
DOI: 10.1111/mice.13294
Abstract:

Dynamic cone resistance (DCR) is a recently introduced soil resistance index that has the unit of stress. It is determined from the dynamic response at the tip of an instrumented dynamic cone penetrometer. However, DCR evaluation is generally a manual, time‐consuming, and error‐prone process. Thus, this study investigates the feasibility of determining DCR using a stacked ensemble (SE) machine learning (ML) model that utilizes signals obtained from dynamic cone penetration testing. Two ML experiments revealed that using only force signals provides more accurate predictions of DCR. In addition, the SE technique outperformed the base learning algorithms in both cases. Overall, the findings suggest that ML techniques can be used to automate the analysis of DCR with force and acceleration signals.

Structurae cannot make the full text of this publication available at this time. The full text can be accessed through the publisher via the DOI: 10.1111/mice.13294.
  • About this
    data sheet
  • Reference-ID
    10791647
  • Published on:
    01/09/2024
  • Last updated on:
    01/09/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine