0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Automated signal‐based evaluation of dynamic cone resistance via machine learning for subsurface characterization

Auteur(s):

Médium: article de revue
Langue(s): anglais
Publié dans: Computer-Aided Civil and Infrastructure Engineering, , n. 16, v. 39
Page(s): 2541-2552
DOI: 10.1111/mice.13294
Abstrait:

Dynamic cone resistance (DCR) is a recently introduced soil resistance index that has the unit of stress. It is determined from the dynamic response at the tip of an instrumented dynamic cone penetrometer. However, DCR evaluation is generally a manual, time‐consuming, and error‐prone process. Thus, this study investigates the feasibility of determining DCR using a stacked ensemble (SE) machine learning (ML) model that utilizes signals obtained from dynamic cone penetration testing. Two ML experiments revealed that using only force signals provides more accurate predictions of DCR. In addition, the SE technique outperformed the base learning algorithms in both cases. Overall, the findings suggest that ML techniques can be used to automate the analysis of DCR with force and acceleration signals.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1111/mice.13294.
  • Informations
    sur cette fiche
  • Reference-ID
    10791647
  • Publié(e) le:
    01.09.2024
  • Modifié(e) le:
    01.09.2024
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine