0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Alkali Activation of Common Clay Deposits: Evaluation of the Suitability by an IR Spectroscopic Method

Author(s): ORCID

Medium: journal article
Language(s): English
Published in: International Journal of Concrete Structures and Materials, , n. 1, v. 18
DOI: 10.1186/s40069-023-00627-y
Abstract:

In the context of a sustainable use of resources with the aim of the reduction of the CO2 footprint, the development of alternative concrete materials has attracted a great deal of attention. In this context, geopolymers, obtained from common clay deposits, are found to be interesting construction materials with very versatile properties. In this paper, a completely novel approach for the evaluation of the suitability of clays for the geopolymer formation is investigated. The method is based on simple and easy-to-handle IR spectroscopic measurements, through which the surface area under the OH stretching band in the IR spectrum of the clay can directly be correlated to the amount of reactive clay components. These reactive components are required for the success of the alkali activation of the clays in order to access geopolymers. Based on the theoretical reaction pathway of the geopolymer formation, the linear relationship between the OH stretching band area and the reactive components can be used for the estimation of the required activator amount for the alkali activation of calcined clays and predict the quality of the casted geopolymer mortar in terms of strength. This new method not only gives an insight into the suitability of a common clay for the geopolymer formation, but also facilitates a straightforward alkali activation procedure without tedious preliminary testing of the required activator amount.

Structurae cannot make the full text of this publication available at this time. The full text can be accessed through the publisher via the DOI: 10.1186/s40069-023-00627-y.
  • About this
    data sheet
  • Reference-ID
    10756648
  • Published on:
    08/01/2024
  • Last updated on:
    08/01/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine