3D printing as an automated manufacturing method for a carbon fiber-reinforced cementitious composite with outstanding flexural strength (105 N/mm2)
Author(s): |
Matthias Rutzen
Michael Schulz Judith Moosburger-Will Philipp Lauff Oliver Fischer Dirk Volkmer |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Materials and Structures, 20 November 2021, n. 6, v. 54 |
DOI: | 10.1617/s11527-021-01827-2 |
Abstract: |
As research interest in the additive manufacturing of cementitious materials for structural uses has been continuously increasing, the question of how to incorporate tensile reinforcement in an automated process has gained further importance. Our research describes a carbon fiber-reinforced cementitious composite produced by common extrusion techniques applied in 3D printing as a means to effectively control fiber alignment. Optimization of the mixture design and consistency allows for admixing up to 3 vol.-% chopped carbon fibers, leading to specimens that can reach a flexural strength exceeding 100 N/mm² without the addition of further continuous reinforcement. Fiber integrity during the process was checked using optical microscopy. Analysis of the microstructure shows that approximately 70% of the fibers are aligned within ± 5° of a preferential direction. Micromechanical single-fiber push-out tests confirm an interfacial fracture toughness typical for strain-hardening systems. The first insights into a ‘lost formwork’ approach commonly employed in 3D printing show that the reinforcement remains effective even when combined with nonreinforced mortar. |
Copyright: | © The Author(s) 2021 |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
5.94 MB
- About this
data sheet - Reference-ID
10637024 - Published on:
30/11/2021 - Last updated on:
02/12/2021