0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

State-of-the-art review on the time-dependent behaviour of composite steel-concrete columns

 State-of-the-art review on the time-dependent behaviour of composite steel-concrete columns
Author(s): , ORCID, , ORCID,
published in
DOI: 10.2749/sed018.ch5
Price: € 25.00 incl. VAT for PDF document  
ADD TO CART
Download preview file (PDF) 0.13 MB

This chapter presents a state-of-the-art review of the time-dependent behaviour of composite columns. The first part of the chapter outlines the available typologies and advantages of composite col...
Read more

Bibliographic Details

Author(s): (Associate Professor, School of Civil Engineering, Harbin Institute of Technology, China)
ORCID (School of Civil Engineering, University of Sydney, Sydney, Australia)
(Professor and Dean, School of Civil Engineering, Harbin Institute of Technology, China)
ORCID (Emeritus Professor, Centre for Infrastructure Engineering and Safety, School of Civil and Environmental Engineering, University of New South Wales, Sydney, Australia)
(Professor, School of Civil Engineering and Environmental Engineering, Harbin Institute of Technology, China)
Medium: book chapter
Language(s): English
Publisher: International Association for Bridge and Structural Engineering
Published in: Zurich, Switzerland
Published in:
Page(s): 83-109 Total no. of pages: 27
Page(s): 83-109
Total no. of pages: 27
Year: 2021
DOI: 10.2749/sed018.ch5
Abstract:

This chapter presents a state-of-the-art review of the time-dependent behaviour of composite columns. The first part of the chapter outlines the available typologies and advantages of composite columns. This is followed by an overview of the time-dependent response of concrete (specific to composite columns) and an introduction to concrete confinement. The main part of the chapter is devoted to the state-of-the-art review on how concrete time effects influence the long-term and ultimate behaviour of concrete-filled steel tube (CFST) columns, and on the combined effects produced by sustained loading and chloride corrosion on CFST columns. The review then deals with the long-term behaviour of concrete-filled double skin tube (CFDST) and encased composite columns. The final parts of the chapter provide a review of the time-dependent differential axial shortening (DAS) in vertical components of multi-storey buildings and on the long-term response of arch bridges.

Keywords:
concrete composite column time-dependent behavior
Copyright: © 2021 International Association for Bridge and Structural Engineering