0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Rupesh Kumar Tipu

The following bibliography contains all publications indexed in this database that are linked with this name as either author, editor or any other kind of contributor.

  1. Xu, Chi / Zhang, Ying / Isleem, Haytham F. / Qiu, Dianle / Zhang, Yun / Alsaadawi, Mostafa Medhat / Kumar Tipu, Rupesh / El‐Demerdash, Waleed E. / Hamed, Asmaa Y.: Numerical and machine learning models for concentrically and eccentrically loaded CFST columns confined with FRP wraps. In: Structural Concrete.

    https://doi.org/10.1002/suco.202400541

  2. Kumar Tipu, Rupesh / Batra, Vandna / Pandya, K. S. / Panchal, V. R. (2024): Predicting compressive strength of concrete with iron waste: a BPNN approach. In: Asian Journal of Civil Engineering, v. 25, n. 7 (July 2024).

    https://doi.org/10.1007/s42107-024-01130-9

  3. Kumar Tipu, Rupesh / Batra, Vandna / Panchal, V. R. / Pandya, K. S. / Patel, Gaurang A. (2024): Optimizing compressive strength in sustainable concrete: a machine learning approach with iron waste integration. In: Asian Journal of Civil Engineering, v. 25, n. 6 (24 June 2024).

    https://doi.org/10.1007/s42107-024-01061-5

  4. Singh, Rajwinder / Kumar Tipu, Rupesh / Mir, Ajaz Ahmad / Patel, Mahesh: Predictive Modelling of Flexural Strength in Recycled Aggregate-Based Concrete: A Comprehensive Approach with Machine Learning and Global Sensitivity Analysis. In: Iranian Journal of Science and Technology, Transactions of Civil Engineering.

    https://doi.org/10.1007/s40996-024-01502-w

  5. Kumar, Kaushal / Arora, Rishabh / Kumar Tipu, Rupesh / Dixit, Saurav / Vatin, Nikolai / Arya, Sandeep (2024): Influence of machine learning approaches for partial replacement of cement content through waste in construction sector. In: Asian Journal of Civil Engineering, v. 25, n. 4 (February 2024).

    https://doi.org/10.1007/s42107-023-00972-z

  6. Kumar Tipu, Rupesh / Panchal, V. R. / Pandya, K. S. (2024): Machine learning-based prediction of concrete strengths with coconut shell as partial coarse aggregate replacement: a comprehensive analysis and sensitivity study. In: Asian Journal of Civil Engineering, v. 25, n. 4 (February 2024).

    https://doi.org/10.1007/s42107-023-00971-0

  7. Kumar Tipu, Rupesh / Batra, Vandna (2024): Predictive modeling of shear strength in fiber-reinforced cementitious matrix-strengthened RC beams using machine learning. In: Asian Journal of Civil Engineering, v. 25, n. 4 (February 2024).

    https://doi.org/10.1007/s42107-023-00976-9

  8. Kumar Tipu, Rupesh / Arora, Rishabh / Kumar, Kaushal (2024): Machine learning-based prediction of concrete strength properties with coconut shell as partial aggregate replacement: A sustainable approach in construction engineering. In: Asian Journal of Civil Engineering, v. 25, n. 3 (January 2024).

    https://doi.org/10.1007/s42107-023-00957-y

  9. Kumar, Rahul / Rathore, Ayush / Singh, Rajwinder / Mir, Ajaz Ahmad / Kumar Tipu, Rupesh / Patel, Mahesh (2024): Prognosis of flow of fly ash and blast furnace slag-based concrete: leveraging advanced machine learning algorithms. In: Asian Journal of Civil Engineering, v. 25, n. 3 (January 2024).

    https://doi.org/10.1007/s42107-023-00922-9

  10. Kumar Tipu, Rupesh / Batra, Vandna / Pandya, K. S. / Panchal, V. R. (2023): Efficient compressive strength prediction of concrete incorporating recycled coarse aggregate using Newton’s boosted backpropagation neural network (NB-BPNN). In: Structures, v. 58 (December 2023).

    https://doi.org/10.1016/j.istruc.2023.105559

  11. Kumar Tipu, Rupesh / Batra, Vandna / Pandya, K. S. / Panchal, V. R. (2023): Enhancing load capacity prediction of column using eReLU-activated BPNN model. In: Structures, v. 58 (December 2023).

    https://doi.org/10.1016/j.istruc.2023.105600

  12. Kumar Tipu, Rupesh / Batra, Vandna / Pandya, K. S. / Panchal, V. R. (2023): Shear capacity prediction for FRCM-strengthened RC beams using Hybrid ReLU-Activated BPNN model. In: Structures, v. 58 (December 2023).

    https://doi.org/10.1016/j.istruc.2023.105432

  13. Kumar Tipu, Rupesh / Batra, Vandna / Panchal, V. R. / Pandya, K. S. (2023): Predictive modelling of surface chloride concentration in marine concrete structures: a comparative analysis of machine learning approaches. In: Asian Journal of Civil Engineering, v. 25, n. 2 (October 2023).

    https://doi.org/10.1007/s42107-023-00854-4

  14. Kumar Tipu, Rupesh / Batra, Vandna (2023): Enhancing prediction accuracy of workability and compressive strength of high-performance concrete through extended dataset and improved machine learning models. In: Asian Journal of Civil Engineering, v. 25, n. 1 (July 2023).

    https://doi.org/10.1007/s42107-023-00768-1

  15. Kumar Tipu, Rupesh / Panchal, V. R. / Pandya, K. S. (2023): Enhancing chloride concentration prediction in marine concrete using conjugate gradient-optimized backpropagation neural network. In: Asian Journal of Civil Engineering, v. 25, n. 1 (July 2023).

    https://doi.org/10.1007/s42107-023-00801-3

  16. Kumar Tipu, Rupesh / Batra, Vandna (2023): Development of a hybrid stacked machine learning model for predicting compressive strength of high-performance concrete. In: Asian Journal of Civil Engineering, v. 24, n. 8 (June 2023).

    https://doi.org/10.1007/s42107-023-00689-z

  17. Kumar Tipu, Rupesh / Panchal, V. R. / Pandya, K. S. (2022): Multi-objective optimized high-strength concrete mix design using a hybrid machine learning and metaheuristic algorithm. In: Asian Journal of Civil Engineering, v. 24, n. 3 (November 2022).

    https://doi.org/10.1007/s42107-022-00535-8

  18. Kumar Tipu, Rupesh / Panchal, V. R. / Pandya, K. S. (2022): An ensemble approach to improve BPNN model precision for predicting compressive strength of high-performance concrete. In: Structures, v. 45 (November 2022).

    https://doi.org/10.1016/j.istruc.2022.09.046

Search for a publication...

Only available with
My Structurae

Full text
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine