Rupesh Kumar Tipu
-
Numerical and machine learning models for concentrically and eccentrically loaded
CFST columns confined withFRP wraps. Dans: Structural Concrete.
: - Predicting compressive strength of concrete with iron waste: a BPNN approach. Dans: Asian Journal of Civil Engineering, v. 25, n. 7 (juillet 2024). (2024):
- Optimizing compressive strength in sustainable concrete: a machine learning approach with iron waste integration. Dans: Asian Journal of Civil Engineering, v. 25, n. 6 (24 juin 2024). (2024):
- Predictive Modelling of Flexural Strength in Recycled Aggregate-Based Concrete: A Comprehensive Approach with Machine Learning and Global Sensitivity Analysis. Dans: Iranian Journal of Science and Technology, Transactions of Civil Engineering. :
- Influence of machine learning approaches for partial replacement of cement content through waste in construction sector. Dans: Asian Journal of Civil Engineering, v. 25, n. 4 (février 2024). (2024):
- Machine learning-based prediction of concrete strengths with coconut shell as partial coarse aggregate replacement: a comprehensive analysis and sensitivity study. Dans: Asian Journal of Civil Engineering, v. 25, n. 4 (février 2024). (2024):
- Predictive modeling of shear strength in fiber-reinforced cementitious matrix-strengthened RC beams using machine learning. Dans: Asian Journal of Civil Engineering, v. 25, n. 4 (février 2024). (2024):
- Machine learning-based prediction of concrete strength properties with coconut shell as partial aggregate replacement: A sustainable approach in construction engineering. Dans: Asian Journal of Civil Engineering, v. 25, n. 3 (janvier 2024). (2024):
- Prognosis of flow of fly ash and blast furnace slag-based concrete: leveraging advanced machine learning algorithms. Dans: Asian Journal of Civil Engineering, v. 25, n. 3 (janvier 2024). (2024):
- Efficient compressive strength prediction of concrete incorporating recycled coarse aggregate using Newton’s boosted backpropagation neural network (NB-BPNN). Dans: Structures, v. 58 (décembre 2023). (2023):
- Enhancing load capacity prediction of column using eReLU-activated BPNN model. Dans: Structures, v. 58 (décembre 2023). (2023):
- Shear capacity prediction for FRCM-strengthened RC beams using Hybrid ReLU-Activated BPNN model. Dans: Structures, v. 58 (décembre 2023). (2023):
- Predictive modelling of surface chloride concentration in marine concrete structures: a comparative analysis of machine learning approaches. Dans: Asian Journal of Civil Engineering, v. 25, n. 2 (octobre 2023). (2023):
- Enhancing prediction accuracy of workability and compressive strength of high-performance concrete through extended dataset and improved machine learning models. Dans: Asian Journal of Civil Engineering, v. 25, n. 1 (juillet 2023). (2023):
- Enhancing chloride concentration prediction in marine concrete using conjugate gradient-optimized backpropagation neural network. Dans: Asian Journal of Civil Engineering, v. 25, n. 1 (juillet 2023). (2023):
- Development of a hybrid stacked machine learning model for predicting compressive strength of high-performance concrete. Dans: Asian Journal of Civil Engineering, v. 24, n. 8 (juin 2023). (2023):
- Multi-objective optimized high-strength concrete mix design using a hybrid machine learning and metaheuristic algorithm. Dans: Asian Journal of Civil Engineering, v. 24, n. 3 (novembre 2022). (2022):
- An ensemble approach to improve BPNN model precision for predicting compressive strength of high-performance concrete. Dans: Structures, v. 45 (novembre 2022). (2022):