0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

The following bibliography contains all publications indexed in this database that are linked with this name as either author, editor or any other kind of contributor.

  1. Islam, Md Mahamodul / Das, Pobithra / Rahman, Md Mahbubur / Naz, Fasiha / Kashem, Abul / Nishat, Mosaraf Hosan / Tabassum, Nujhat (2024): Prediction of compressive strength of high-performance concrete using optimization machine learning approaches with SHAP analysis. In: Journal of Building Pathology and Rehabilitation, v. 9, n. 2 (29 May 2024).

    https://doi.org/10.1007/s41024-024-00445-z

  2. Das, Pobithra / Kashem, Abul / Islam, Mominul / Ahmed, Asif / Aminul Haque, M. / Khan, Mehran (2024): Alkali-activated binder concrete strength prediction using hybrid-deep learning along with shapely additive explanations and uncertainty analysis. In: Construction and Building Materials, v. 435 (July 2024).

    https://doi.org/10.1016/j.conbuildmat.2024.136711

  3. Kashem, Abul / Karim, Rezaul / Malo, Somir Chandra / Das, Pobithra / Datta, Shuvo Dip / Alharthai, Mohammad (2024): Hybrid data-driven approaches to predicting the compressive strength of ultra-high-performance concrete using SHAP and PDP analyses. In: Case Studies in Construction Materials, v. 20 (July 2024).

    https://doi.org/10.1016/j.cscm.2024.e02991

  4. Kashem, Abul / Karim, Rezaul / Das, Pobithra / Datta, Shuvo Dip / Alharthai, Mohammad (2024): Compressive strength prediction of sustainable concrete incorporating rice husk ash (RHA) using hybrid machine learning algorithms and parametric analyses. In: Case Studies in Construction Materials, v. 20 (July 2024).

    https://doi.org/10.1016/j.cscm.2024.e03030

  5. Das, Pobithra / Kashem, Abul / Hasan, Imrul / Islam, Mominul (2024): A comparative study of machine learning models for construction costs prediction with natural gradient boosting algorithm and SHAP analysis. In: Asian Journal of Civil Engineering, v. 25, n. 4 (February 2024).

    https://doi.org/10.1007/s42107-023-00980-z

  6. Das, Pobithra / Kashem, Abul (2024): Hybrid machine learning approach to prediction of the compressive and flexural strengths of UHPC and parametric analysis with shapley additive explanations. In: Case Studies in Construction Materials, v. 20 (July 2024).

    https://doi.org/10.1016/j.cscm.2023.e02723

  7. Karim, Rezaul / Islam, Md. Hamidul / Datta, Shuvo Dip / Kashem, Abul (2024): Synergistic effects of supplementary cementitious materials and compressive strength prediction of concrete using machine learning algorithms with SHAP and PDP analyses. In: Case Studies in Construction Materials, v. 20 (July 2024).

    https://doi.org/10.1016/j.cscm.2023.e02828

  8. Islam, Naimul / Kashem, Abul / Das, Pobithra / Ali, Md. Nimar / Paul, Sourov (2023): Prediction of high-performance concrete compressive strength using deep learning techniques. In: Asian Journal of Civil Engineering, v. 25, n. 1 (July 2023).

    https://doi.org/10.1007/s42107-023-00778-z

  9. Paul, Sourov / Das, Pobithra / Kashem, Abul / Islam, Naimul (2023): Sustainable of rice husk ash concrete compressive strength prediction utilizing artificial intelligence techniques. In: Asian Journal of Civil Engineering, v. 25, n. 2 (October 2023).

    https://doi.org/10.1007/s42107-023-00847-3

  10. Kashem, Abul / Das, Pobithra (2023): Compressive strength prediction of high-strength concrete using hybrid machine learning approaches by incorporating SHAP analysis. In: Asian Journal of Civil Engineering, v. 24, n. 8 (June 2023).

    https://doi.org/10.1007/s42107-023-00707-0

Search for a publication...

Only available with
My Structurae

Full text
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine