0
  • DE
  • EN
  • FR
  • Internationale Datenbank und Galerie für Ingenieurbauwerke

Anzeige

Die folgende Bibliografie enthält alle in dieser Datenbank indizierten Veröffentlichungen, die mit diesem Namen als Autor, Herausgeber oder anderweitig Beitragenden verbunden sind.

  1. Islam, Md Mahamodul / Das, Pobithra / Rahman, Md Mahbubur / Naz, Fasiha / Kashem, Abul / Nishat, Mosaraf Hosan / Tabassum, Nujhat (2024): Prediction of compressive strength of high-performance concrete using optimization machine learning approaches with SHAP analysis. In: Journal of Building Pathology and Rehabilitation, v. 9, n. 2 (29 Mai 2024).

    https://doi.org/10.1007/s41024-024-00445-z

  2. Das, Pobithra / Kashem, Abul / Islam, Mominul / Ahmed, Asif / Aminul Haque, M. / Khan, Mehran (2024): Alkali-activated binder concrete strength prediction using hybrid-deep learning along with shapely additive explanations and uncertainty analysis. In: Construction and Building Materials, v. 435 (Juli 2024).

    https://doi.org/10.1016/j.conbuildmat.2024.136711

  3. Kashem, Abul / Karim, Rezaul / Malo, Somir Chandra / Das, Pobithra / Datta, Shuvo Dip / Alharthai, Mohammad (2024): Hybrid data-driven approaches to predicting the compressive strength of ultra-high-performance concrete using SHAP and PDP analyses. In: Case Studies in Construction Materials, v. 20 (Juli 2024).

    https://doi.org/10.1016/j.cscm.2024.e02991

  4. Kashem, Abul / Karim, Rezaul / Das, Pobithra / Datta, Shuvo Dip / Alharthai, Mohammad (2024): Compressive strength prediction of sustainable concrete incorporating rice husk ash (RHA) using hybrid machine learning algorithms and parametric analyses. In: Case Studies in Construction Materials, v. 20 (Juli 2024).

    https://doi.org/10.1016/j.cscm.2024.e03030

  5. Das, Pobithra / Kashem, Abul / Hasan, Imrul / Islam, Mominul (2024): A comparative study of machine learning models for construction costs prediction with natural gradient boosting algorithm and SHAP analysis. In: Asian Journal of Civil Engineering, v. 25, n. 4 (Februar 2024).

    https://doi.org/10.1007/s42107-023-00980-z

  6. Das, Pobithra / Kashem, Abul (2024): Hybrid machine learning approach to prediction of the compressive and flexural strengths of UHPC and parametric analysis with shapley additive explanations. In: Case Studies in Construction Materials, v. 20 (Juli 2024).

    https://doi.org/10.1016/j.cscm.2023.e02723

  7. Karim, Rezaul / Islam, Md. Hamidul / Datta, Shuvo Dip / Kashem, Abul (2024): Synergistic effects of supplementary cementitious materials and compressive strength prediction of concrete using machine learning algorithms with SHAP and PDP analyses. In: Case Studies in Construction Materials, v. 20 (Juli 2024).

    https://doi.org/10.1016/j.cscm.2023.e02828

  8. Islam, Naimul / Kashem, Abul / Das, Pobithra / Ali, Md. Nimar / Paul, Sourov (2023): Prediction of high-performance concrete compressive strength using deep learning techniques. In: Asian Journal of Civil Engineering, v. 25, n. 1 (Juli 2023).

    https://doi.org/10.1007/s42107-023-00778-z

  9. Paul, Sourov / Das, Pobithra / Kashem, Abul / Islam, Naimul (2023): Sustainable of rice husk ash concrete compressive strength prediction utilizing artificial intelligence techniques. In: Asian Journal of Civil Engineering, v. 25, n. 2 (Oktober 2023).

    https://doi.org/10.1007/s42107-023-00847-3

  10. Kashem, Abul / Das, Pobithra (2023): Compressive strength prediction of high-strength concrete using hybrid machine learning approaches by incorporating SHAP analysis. In: Asian Journal of Civil Engineering, v. 24, n. 8 (Juni 2023).

    https://doi.org/10.1007/s42107-023-00707-0

Eine Veröffentlichung suchen...

Nur verfügbar mit
Mein Structurae

Volltext
Structurae kooperiert mit
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine