0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

La bibliographie suivante contient toutes les publications répertoriées dans la base de données qui sont reliées à ce nom en tant qu'auteur, éditeur ou collaborateur.

  1. Pombeiro, Henrique / Santos, Joao / Carreira, Paulo / Silva, Carlos (2019): Displaying data is not enough: Incorporating User Behavior Transformation in domestic reporting systems. Dans: Sustainable Cities and Society, v. 48 (juillet 2019).

    https://doi.org/10.1016/j.scs.2019.101451

  2. Pedro, Joana / Silva, Carlos / Pinheiro, Manuel Duarte (2018): Scaling up LEED-ND sustainability assessment from the neighborhood towards the city scale with the support of GIS modeling: Lisbon case study. Dans: Sustainable Cities and Society, v. 41 (août 2018).

    https://doi.org/10.1016/j.scs.2017.09.015

  3. Pombeiro, Henrique / Machado, Maria João / Silva, Carlos (2017): Dynamic programming and genetic algorithms to control an HVAC system: Maximizing thermal comfort and minimizing cost with PV production and storage. Dans: Sustainable Cities and Society, v. 34 (octobre 2017).

    https://doi.org/10.1016/j.scs.2017.05.021

  4. Azevedo, Luís / Gomes, Ricardo / Silva, Carlos (2019): Influence of model calibration and optimization techniques on the evaluation of thermal comfort and retrofit measures of a Lisbon household using building energy simulation. Dans: Advances in Building Energy Research, v. 15, n. 5 (avril 2019).

    https://doi.org/10.1080/17512549.2019.1654916

  5. Gomes, Ricardo / Ferreira, Ana / Azevedo, Luís / Costa Neto, Rui / Aelenei, Laura / Silva, Carlos (2018): Retrofit measures evaluation considering thermal comfort using building energy simulation: two Lisbon households. Dans: Advances in Building Energy Research, v. 15, n. 3 (septembre 2018).

    https://doi.org/10.1080/17512549.2018.1520646

  6. Pombeiro, Henrique / Santos, Rodolfo / Carreira, Paulo / Silva, Carlos / Sousa, João M. C. (2017): Comparative assessment of low-complexity models to predict electricity consumption in an institutional building: Linear regression vs. fuzzy modeling vs. neural networks. Dans: Energy and Buildings, v. 146 (juillet 2017).

    https://doi.org/10.1016/j.enbuild.2017.04.032

Rechercher une publication...

Disponible seulement avec
Mon Structurae

Texte intégral
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine