0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Theoretical Analysis of Energy Distribution Characteristics in Deeply Buried Circular Tunnels with a Revealed Cave

Auteur(s): ORCID

ORCID
Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 8, v. 14
Page(s): 2343
DOI: 10.3390/buildings14082343
Abstrait:

This study aims to analyze the distribution characteristics of energy in deeply buried circular tunnels with a revealed cave. Analytical solutions for the stress and elastic strain energies in these tunnels are derived using the complex variable method and compared with numerical solutions obtained from finite element simulations. Subsequently, a parametric study investigates the effects of the cave’s orientation, shape, and protrusion on the distribution of elastic strain energy. Finally, the influence of the revealed cave on the stability of the surrounding rock is analyzed using the evaluation index based on energy theory. The conclusions are as follows: the presence of the cave causes elastic strain energy to accumulate in the surrounding rock near the middle of the cave. The smaller the angle between the cave direction and the minimum principal stress, the more severe the energy accumulation near the cave. As the cave’s protrusion increases and the b/a ratio of its shape decreases, energy accumulation near the cave becomes more severe. The presence of the cave increases the tendency for tunnel failure. The middle of the cave is susceptible to damage due to the accumulation of strain energy, while the intersection of the cave and the tunnel is more prone to damage because tensile stresses lower the energy threshold for surrounding rock failure. The study indicates that the middle of the cave and the junction between the cave and the tunnel are key areas requiring safety protection during construction.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10795772
  • Publié(e) le:
    01.09.2024
  • Modifié(e) le:
    01.09.2024
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine