0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Shear strength assessment of reinforced recycled aggregate concrete beams without stirrups using soft computing techniques

Auteur(s):


Médium: article de revue
Langue(s): anglais
Publié dans: Journal of Building Pathology and Rehabilitation, , n. 2, v. 8
DOI: 10.1007/s41024-023-00343-w
Abstrait:

This paper presents a study to predict the shear strength of reinforced recycled aggregate concrete beams without stirrups using soft computing techniques. The methodology involves the development of a Multi-Objective Genetic Algorithm Evolutionary Polynomial Regression (MOGA-EPR) and Gene Expression Programming (GEP) models. The input variables considered are the longitudinal reinforcement ratio, recycled coarse aggregate ratio, beam cross-section dimensions, and concrete compressive strength. Data collected from the literature were used to train and validate the models. The results showed that the MOGA-EPR and GEP models can accurately predict the shear strength of beams without stirrups. The models also performed better than equations from the codes and literature. This study provides an alternative approach to accurately predict the shear strength of reinforced recycled aggregate concrete beams without stirrups.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1007/s41024-023-00343-w.
  • Informations
    sur cette fiche
  • Reference-ID
    10743393
  • Publié(e) le:
    28.10.2023
  • Modifié(e) le:
    28.10.2023
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine