0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Feature Selection-Based Method for Scaffolding Assembly Quality Inspection Using Point Cloud Data

Auteur(s):

ORCID
ORCID
Médium: article de revue
Langue(s): anglais
Publié dans: Buildings, , n. 8, v. 14
Page(s): 2518
DOI: 10.3390/buildings14082518
Abstrait:

The stability of scaffolding structures is crucial for quality management in construction. Currently, scaffolding assembly quality monitoring relies on visual inspections performed by designated on-site personnel, which are highly subjective, inaccurate, and inefficient, hindering the advancement of intelligent construction practices. This study proposes an automated method for scaffolding assembly quality inspection using point cloud data and feature selection algorithms. High-precision point cloud data of the scaffolding are captured by a Trimble X7 3D laser scanner. After registration with the forward design model, a 2D slicing comparison method is developed to measure geometric dimensions with an accuracy controlled within 0.1 mm. The collected data are used to build an SVM model for automated assembly quality inspection. To combat the curse of dimensionality associated with high-dimensional data, an optimized genetic algorithm is employed for the dimensionality reduction in the raw sample data, effectively eliminating data redundancy and significantly enhancing convergence speed and classification accuracy of the detection model. Case studies indicate that the proposed method can reduce feature dimensionality by 70% while simultaneously improving classification accuracy by 13.9%. The proposed method enables high-precision automated inspection of scaffolding assembly quality. By identifying the optimal feature subset, the method differentiates the priority of various structural parameters during inspection, providing insights for optimizing the quality inspection process.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

Cette oeuvre a été publiée sous la license Creative Commons Attribution 4.0 (CC-BY 4.0). Il est autorisé de partager et adapter l'oeuvre tant que l'auteur est crédité et la license est indiquée (avec le lien ci-dessus). Vous devez aussi indiquer si des changements on été fait vis-à-vis de l'original.

  • Informations
    sur cette fiche
  • Reference-ID
    10795550
  • Publié(e) le:
    01.09.2024
  • Modifié(e) le:
    25.01.2025
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine