0
  • DE
  • EN
  • FR
  • Base de données et galerie internationale d'ouvrages d'art et du génie civil

Publicité

Building-damage detection method based on machine learning utilizing aerial photographs of the Kumamoto earthquake

Auteur(s):







Médium: article de revue
Langue(s): anglais
Publié dans: Earthquake Spectra, , n. 3, v. 36
Page(s): 1166-1187
DOI: 10.1177/8755293019901309
Abstrait:

This article presents a method for detecting damaged buildings in the event of an earthquake using machine learning models and aerial photographs. We initially created training data for machine learning models using aerial photographs captured around the town of Mashiki immediately after the main shock of the 2016 Kumamoto earthquake. All buildings are classified into one of the four damage levels by visual interpretation. Subsequently, two damage discrimination models are developed: a bag-of-visual-words model and a model based on a convolutional neural network. Results are compared and validated in terms of accuracy, revealing that the latter model is preferable. Moreover, for the convolutional neural network model, the target areas are expanded and the recalls of damage classification at the four levels range approximately from 66% to 81%.

Structurae ne peut pas vous offrir cette publication en texte intégral pour l'instant. Le texte intégral est accessible chez l'éditeur. DOI: 10.1177/8755293019901309.
  • Informations
    sur cette fiche
  • Reference-ID
    10672471
  • Publié(e) le:
    12.06.2022
  • Modifié(e) le:
    12.06.2022
 
Structurae coopère avec
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine