0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Wind Pressure Characteristics Based on the Rise–Span Ratio of Spherical Domes with Openings on the Roof

Author(s): ORCID
ORCID

ORCID
Medium: journal article
Language(s): English
Published in: Buildings, , n. 5, v. 12
Page(s): 576
DOI: 10.3390/buildings12050576
Abstract:

Wind loads are a primary concern in dome roof structures with openings such as retractable dome roofs. This is because the openings can cause damage to the cladding owing to high internal pressure. In this study, the wind pressure characteristics of a dome with an opening that varied based on the opening, rise–span ratio, and height span were examined by comparing the results from wind tunnel tests with those from previous studies. The negative pressure dominated the internal pressure of the roof in all regions and was not significantly affected by changes in the rise–span and height–span ratios. The reattachment distance of the windward region increased as the rise–span ratio increased, increasing the negative net pressure and decreasing the positive net pressure owing to a relatively large vortex. The roof inclination angle of the leeward region decreased as the rise–span ratio decreased, resulting in a decrease in the negative net pressure and an increase in the positive net pressure owing to a relatively small vortex. Based on the experimental results, a peak net pressure coefficient for cladding design was proposed for an open dome roof with a rise–span ratio of 0.05.

Copyright: © 2022 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10664263
  • Published on:
    09/05/2022
  • Last updated on:
    01/06/2022
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine