Wind Load and Wind Vibration Response of a TV Tower Based on Force Measurement Test in a Wind Tunnel
Author(s): |
Daqiao Xia
Kangfu Peng |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Advances in Civil Engineering, January 2022, v. 2022 |
Page(s): | 1-12 |
DOI: | 10.1155/2022/7629438 |
Abstract: |
Television towers have a complex aerodynamic shape and low damping characteristics. As such, the wind load and the wind induction response are key factors in their design and maintenance. To study these two parameters of high-rise TV towers, a wind tunnel force test was conducted at a height of 280 m using the Foshan TV tower as a model. The TV tower model was divided into seven detachable sections. Three wind fields with different turbulence intensities were simulated in the wind tunnel, corresponding to different sections, and lateral force tests were performed on each section using a high-frequency dynamic balance. The experimental results were used to calculate the wind-induced response when considering the modal (first three-order) coupled response and were compared with the wind-induced response calculated using the complete quadratic combination (CQC) method. The results revealed that equivalent static wind loads (ESQL) and CQC calculation methods were used in this study, and a higher degree of coincidence was observed, which may be useful in engineering practice. |
Copyright: | © 2022 Daqiao Xia and Kangfu Peng et al. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
3.91 MB
- About this
data sheet - Reference-ID
10657343 - Published on:
17/02/2022 - Last updated on:
01/06/2022