Wind-Induced Interference Effect of Chamfered Square Cylinders in Tandem and Side-by-Side Arrangements
Author(s): |
Jie Zhang
Fanghui Li Zhibo Zhang Te Zhang Cheng Wang Benjun Xiang Yuji Zhang |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 1 December 2022, n. 12, v. 12 |
Page(s): | 2125 |
DOI: | 10.3390/buildings12122125 |
Abstract: |
A large-eddy simulation analysis technique is introduced in this paper to determine the interference effect of chamfered square cylinders, which is crucial to predict the impact of wind pressure and load on chamfered high-rise buildings. Based on the grid convergence analysis of the model and the validation of its accuracy, the aerodynamic interference effect, including the flow field distribution of parallel and tandem square cylinders with different spacing ratios has been compared and analyzed. The influence regulation and formation mechanism of the wind pressure interference effect have been explored. For side-by-side chamfered corners square cylinders, the average drag coefficient mainly shows an amplification effect, and the fluctuating lift coefficient mainly shows a reduction effect. When B/L = 1.5, the interference factor of the disturbed square cylinder reaches a maximum, which is located at the back flow field on the adjacent side. There is a clear critical spacing ratio for tandem double-cut square cylinders. When the spacing ratio exceeds the critical value, significant changes are observed in the aerodynamic performance. These include wind pressure distribution, non-Gaussian characteristics, and the interference effects of structures. |
Copyright: | © 2022 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
5.09 MB
- About this
data sheet - Reference-ID
10700279 - Published on:
11/12/2022 - Last updated on:
15/02/2023