Weight Optimization of Discrete Truss Structures Using Quantum-Based HS Algorithm
Author(s): |
Seungjae Lee
Junhong Ha Sudeok Shon Donwoo Lee |
---|---|
Medium: | journal article |
Language(s): | English |
Published in: | Buildings, 23 August 2023, n. 9, v. 13 |
Page(s): | 2132 |
DOI: | 10.3390/buildings13092132 |
Abstract: |
Recently, a new field that combines metaheuristic algorithms and quantum computing has been created and is being applied to optimization problems in various fields. However, the application of quantum computing-based metaheuristic algorithms to the optimization of structural engineering is insufficient. Therefore, in this paper, we tried to optimize the weight of the truss structure using the QbHS (quantum-based harmony search) algorithm, which combines quantum computing and conventional HS (harmony search) algorithms. First, the convergence performance according to the parameter change of the QbHS algorithm was compared. The parameters selected for the comparison of convergence performance are QHMS, QHMCR, QPAR, ϵ, and θr. The selected parameters were compared using six benchmark functions, and the range for deriving the optimal convergence performance was found. In addition, weight optimization was performed by applying it to a truss structure with a discrete cross-sectional area. The QbHS algorithm derived a lower weight than the QEA (quantum-inspired evolutionary algorithm) and confirmed that the convergence performance was better. A new algorithm that combines quantum computing and metaheuristic algorithms is required for application to various engineering problems, and this effort is essential for the expansion of future algorithm development. |
Copyright: | © 2023 by the authors; licensee MDPI, Basel, Switzerland. |
License: | This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met. |
6.43 MB
- About this
data sheet - Reference-ID
10737469 - Published on:
02/09/2023 - Last updated on:
14/09/2023